

SAVE PLANET

TEAM EKOKROM

ANA VIDAKOVIĆ	Faculty of Civil Engineering, Architecture and Geodesy, University of Split
IVANA MLADINOVIĆ	Faculty of Mining, Geology and Petroleum Engineering, Geological Engineering, University of Zagreb
FRANKA JURAKOVIĆ	Faculty of Civil Engineering, University of Zagreb
ROBERT HORN	Faculty of Science, Analytical Chemistry and Biochemistry, University of Zagreb
IDA CAREVIĆ	Faculty of Science, Enviromental Sciences, University of Zagreb

PROJECT ASPECTS

ECOLOGY ASPECT

Soil, water and air tests

TECHNICAL ASPECT

3 phases

SOCIAL ASPECT

Activism as everyday life

ECONOMICAL ASPECT

Profit generation

Date		2007.			Novem	ber 2011.		May 2014.						2014. 2022.						
Type of sample	Samp	ole fron	n well	Surface (bigger	e sample fraction)	Surface (smaller	sample fraction)	Surface sample, eluates			Surface sample (bigger fraction)	Surface sample (smaller fraction)	Surfce samples							
Sample number	2	3	4	1	2	3	4	1	2	3	4	5	6	1	2	1	2	3	4	5
As								<0,2	<0,2	<0,2	<0,2	<0,2	<0,2			12,5	5,41	8,99	70,8	78,4
Pb	39,25	51,68	19,87					<0,2	<0,2	<0,2	<0,2	<0,2	<0,2	8,56	12,22	67	11,4	140	47,5	26
Cd	0,2	0,2	0,1							a	_			<0,5	<0,5	0,355	0,241	2,86	1,21	0,69
Hg							3	<0,2	<0,1	<0,1	<0,1	<0,1	<0,1	<0,02	<0,02	0,05	0,01	0,1	0,08	0,08
Cu														2,03	9,16	90	21,7	47,2	31	38,5
Zn	95,47	124,3	24,37									_		138,56	84,56	337	192	286	136	600
Cr (III)								<0,5	<0,5	<0,5	<0,5	<0,5	<0,5							
Cr (VI)			-					<0,5	<0,5	<0,5	<0,5	<0,5	1,29			1,65	0,54	0,47	1,03	12,3
Cr	365,2	398,3	48,34	0,57	0,47	0,83	0,55	<1	<1	<1	<1	<1	1,29	560,54	698,29	-	0	÷.		
Ni								<0,2	<0,2	<0,2	<0,2	<0,2	<0,2	5,29	32,24	121	138	74	78	517
ΣPCB ₇								<0,1	<0,1	<0,1	<0,1	<0,1	<0,1							
DDT																				
∑PAH ₁₆				1,02	1,56	6,42	8,12	<0,01	105,7	31,5	6,9	8,5	0,02	0,376	42,802	4,74	0,57	6,9	11,15	1,62
Benzo(a)piren														0,109	11,534					
Alifats C8-C10																				
Alifats >C10-C12							-													
Alifats >C12-C35																	8	\$		*
DEHP	6		3																	
Dioksins/furans																				
Fenols										x I		3			÷					
Benzen															- -					

LAND ANALYSIS

Accredited and the most

sophisti	cated methods	Materijali/Proizvodi Materials/Products	Vrsta ispitivanja/Svojstvo Type of test/Property Raspon /Range	Metoda ispitivanja Test method	
Otpadna, površinska, podzemna voda, eluat otpada i tlo * Waste water, surface water, ground water, waste eluate and soil	Određivanje kroma (VI) Spektrometrijska metoda s 1,5- difenilkarbazidom Determination of chromium (VI) - Spectrometric method using 1,5 – diphenylcarbazide Granica kvantifikacije/Quantification limit 0,025 mg/L	HRN ISO 11083:1998 (ISO 11083:1994)		Odredivanje policikličkih aromatskih ugljikovodika (PAH) (GC-MS) Determination of polycyclic aromatic hydrocarbons (PAH) (GC-MS) Granica kvantifikacije/Quantification limit Naftalen/ 0,01 mg/kg Naphtalene Acenafilen/ 0,01 mg/kg Acenaphthene Fluoren/ 0,01 mg/kg Fluoren/ 0,01 mg/kg Fluoren/ 0,01 mg/kg Fenantren/ 0,01 mg/kg	Vlastita metoda/ In-house method RU-OTV-160
Tlo, mulj, kompost, digestat Soil, sludge, digestate, compost	Određivanje elemenata (As, Ba, Ca, Cd, Co, Cr, Cu, Hg, K, Mg, Mo, Mn, Ni, Pb, Sb, Se, Fe, V, Zn) (ICP-MS) <i>Determination of elements</i> (As, Ba, Ca, Cd, Co, Cr, Cu, Hg, K, Mg, Mo, Mn, Ni, Pb, Sb, Se, Fe, V, Zn) (ICP-MS) Granica kvantifikacije/Quantification limit 0,010 mg/kg	Vlastita metoda/ In-house method RU-OTV-166 izdanje/edition 3 01.05.2021.	Tlo i sediment Soil and sediment	Anthracene 0,01 mg/kg Anthracene 0,01 mg/kg Fluoranten/ 0,01 mg/kg Piren/ 0,01 mg/kg Benzo(a)antracen/ 0,01 mg/kg Benzo(a)antracen/ 0,01 mg/kg Krizen/ 0,01 mg/kg Benzo(b)fluoranten/ 0,01 mg/kg Benzo(b)fluoranten/ 0,01 mg/kg Benzo(b)fluoranthene 0,01 mg/kg Benzo(k)fluoranthene 0,01 mg/kg Benzo(k)fluoranthene 0,01 mg/kg Benzo(a)piren/ 0,01 mg/kg Indeno(1,2,3- cd)piren/ Indeno(1,2,3- 0,01 mg/kg Indeno(1,2,3- 0,01 mg/kg Benzo(g),hi)perilen/ 0,01 mg/kg	nodificirana/modified HRN ISO 18287:2011 (ISO 18287:2006)

ADDITIONAL ANALYSIS

Seawater (biocenosis)

Sea cyanobacteria

Mussels

Sea mud

OI Values	Air Quality	Health Concerns'					
-	Descriptor	PM2.5	PM10				
- 50	Good	None	None				
1 - 100**	Moderate	None	None				
01 - 150	Unhealthy for Sensitive Groups	People with respiratory or heart disease, the elderly, and children should limit prolonged exertion.	People with respiratory disease, such as asthma, should limit outdoor exertion.				
51 - 200	Unhealthy	People with respiratory or heart disease, the elderly, and children should avoid prolonged exertion; everyone else should limit prolonged exertion.	People with respiratory disease, such as asthma, should avoid outdoor exertion; everyone else, especially the elderly and children, should limit prolonged outdoor exertion.				
01 - 300	Very Unhealthy	People with respiratory or heart disease, the elderly, and children should avoid any outdoor activity; everyone else should avoid prolonged exertion.	People with respiratory disease, such as asthma, should avoid any outdoper else, especially the elderly and children, should limit outdoor exertion.				
01 - 500	Hazardotis	Everyone should avoid any outdoor exertion; people with respiratory or heart disease, the elderly, and children should remain indoors.	Everyone should avoid any outdoor exertion; people with respiratory disease, such as asthma, should remain indoors.				

Wastewater

02 **TECHNICAL ASPECT**

3 PHASES

PHASE I	Marine
PHASE 2	Hotel
PHASE 3	Park

K

O3 SOCIAL **ASPECT**

Activism as everyday life

TIMELINE AND EXPENSES

Solar panels Profit from hotel complex (conference room lease, start-up offices, casino...) Profit from nautical marine (boat service, dry dock, berth lease, luxury yachts lease...) Outdoor activities (oper-air cinema, concerts, festivals...)

Selling slack for construction

Thank you for attention!

